ORNL/TM-2014/367

National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity – A Field Investigation

Scott Pigg

September 2014

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov *Website* http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov *Website* http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL Principal Investigator

Dr. Bruce Tonn

Evaluation Team Task Manager Scott Pigg

ORNL/TM-2014/367

Environmental Sciences Division

NATIONAL WEATHERIZATION ASSISTANCE PROGRAM IMPACT EVALUATION: IMPACT OF EXHAUST-ONLY VENTILATION ON INDOOR RADON AND HUMIDITY – A FIELD INVESTIGATION

Scott Pigg Energy Center of Wisconsin

September 2014

Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

CONTENTS

Page

LIST	Γ OF FIGURES	
LIST	Γ OF TABLES	vii
ACR	RONYMS AND ABBREVIATIONS	ix
ACK	KNOWLEDGEMENTS	xi
EXE	CUTIVE SUMMARY	xiii
1.	INTRODUCTION	1
	1.1 NATIONAL WEATHERIZATION ASSISTANCE PROGRAM EVALUATION	
	OVERVIEW	1
	1.2 BACKGROUND	1
	1.3 RADON AND EXHAUST-ONLY VENTILATION	2
2.	METHODOLOGY	5
	2.1 RECRUITMENT AND CHARACTERISTICS OF STUDY HOMES	5
	2.2 INSTALLED VENTILATION EQUIPMENT	7
	2.3 EXPERIMENTAL APPROACH AND MONITORING	
	RESULTS	
	3.1 RADON IMPACTS	
	3.2 HUMIDITY	
4.	CONCLUSIONS	
	REFERENCES	
APP	ENDIX A. REGRESSION MODELS	1
APP	ENDIX B. TIME SERIES PLOTS	1

LIST OF FIGURES

Figure

Fig.	2.1.	Locations of study sites	5
-		Study sites	
		Measured versus ASHRAE-62.2 required continuous flow.	
Fig.	3.1.	Overview of ventilation fan operation and measured radon level by site	13
Fig.	3.2.	Radon level by bins of outdoor temperature	14
Fig.	3.3.	Relative change in radon level associated with fan operation.	16
Fig.	3.4.	Radon and fan-operation time series for Site 18 (high impact).	17
Fig.	3.5.	Fan operation and radon time series for Site 16 (low impact)	17
Fig.	3.6.	Relative impact on radon versus estimated relative fan contribution to overall ventilation	19
Fig.	3.7.	Relative impact of fan on radon versus outdoor temperature	20
Fig.	3.8.	Relative humidity impacts of fan operation	22
-			

LIST OF TABLES

TablePageTable 2.1. Selected characteristics of study sites.7Table 2.2. Ventilation characteristics.9Table 2.3. Monitoring parameters.11Table 3.1. Radon level with and without ventilation system operation.15Table 3.2. Foundation type for low- and high-impact sites.18Table 3.3. Indoor temperature and humidity (at 32F outdoor temperature).22

ACRONYMS AND ABBREVIATIONS

ASHRAE ASOS	American Society of Heating, Refrigerating and Air Conditioning Engineers Automated Surface Observing System
AWOS	Automated Weather Observing System
CFM50	Cubic Feet per Minute @ 50 pascals
CFR	Code of Federal Regulations
DOE	Department of Energy
IAQ	Indoor Air Quality
ORNL	Oak Ridge National Laboratory
pCi/L	Picocuries per liter
WAP	Weatherization Assistance Program
WPN	Weatherization Program Notice

ACKNOWLEDGEMENTS

The work presented in this report was funded by the U.S. Department of Energy's (DOE) Office of Weatherization and Intergovernmental Programs (OWIP).

WAP Evaluation Team members who contributed to this project include:

Ben Auchter, Energy Center of Wisconsin Michael Blasnik, Blasnik and Associates David Carroll, APPRISE Dan Cautley, Energy Center of Wisconsin Paul Francisco of the University of Illinois Melanie Lord, Energy Center of Wisconsin Alex McEwan, APPRISE Nick Sayen, Energy Center of Wisconsin Adrian Scott, Wisconsin Energy Conservation Corporation Russ Shaber, APPRISE Anita Sprenger, Energy Center of Wisconsin

We also gratefully acknowledge the cooperation of the 18 participating households involved in the study, as well as the assistance of the local weatherization agency staff who helped with arrangements for installation of ventilation equipment in the homes.

EXECUTIVE SUMMARY

The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP). The study involved 18 homes in Colorado, Iowa, Minnesota and Ohio that had already been involved in a prior indoor-air-quality study, and had been shown to have moderately elevated radon levels.

For the study, exhaust-only ventilation that was compliant with American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62.2-2010, "Ventilation, and Acceptable Indoor Air Quality in Low-Rise Residential Buildings," was installed in each home to provide continuous background ventilation. The impact of the ventilation on radon and humidity was assessed with an experimental protocol that involved using a timer in each home to disable the installed ventilation on alternate weeks, thus allowing an examination of the difference in radon and humidity levels with and without the ventilation operating. Radon levels were monitored continuously on the lowest occupied level of the home, and humidity was tracked at the main thermostat. Monitoring was installed at the sites between late December 2012 and early March 2013, and continued into June 2013. One site was later dropped due to insufficient data from fan operating periods.

Key results are as follows:

Radon

- Radon levels declined or remained about the same for all homes in the study when the ventilation was operated. On average, the installed ventilation reduced radon levels by 12 ±7 percent.
- No homes experienced any practically-significant increase in radon with operation of the ventilation—though statistical uncertainty for individual sites does not preclude that possibility. This suggests that in most cases, the dilution effect of exhaust-only ventilation outweighs any tendency to increase the radon entry rate by depressurizing foundation spaces.
- Six homes showed a larger (and more regular) decline in radon with operation of the ventilation than the other sites. These included all three sites where the exhaust ventilation was located in a basement, as well as the single site with slab-on-grade construction.
- Sites with higher ventilation flow rates relative to their estimated seasonal natural ventilation rate also tended to show a larger impact from the ventilation.

Humidity

- On average, relative humidity was reduced by a statistically significant 1.7 ± 1.2 percentage points by the ventilation. All but one site experienced a decline in relative humidity associated with operation of the ventilation.
- No relationship was observed between the ventilation's impact on relative humidity and general humidity level in the home.

1. INTRODUCTION

1.1 NATIONAL WEATHERIZATION ASSISTANCE PROGRAM EVALUATION OVERVIEW

The U.S. Department of Energy's (DOE) Weatherization Assistance Program (WAP) was created by Congress in 1976 under Title IV of the Energy Conservation and Production Act. The purpose and scope of the Program as currently stated in the Code of Federal Regulations (CFR) 10CRF 440.1 is "to increase the energy efficiency of dwellings owned or occupied by low-income persons, reduce their total residential energy expenditures, and improve their health and safety, especially low-income persons who are particularly vulnerable such as the elderly, persons with disabilities, families with children, high residential energy users, and households with high energy burden." (*Code of Federal Regulations, 2011*)

At the request of DOE, Oak Ridge National Laboratory (ORNL) developed a comprehensive plan for a national evaluation of WAP that was published in 2007. DOE furnished funding to ORNL in 2009 for a national evaluation for Program Years 2007 and 2008, with a particular emphasis on PY 2008. ORNL subcontracted evaluation research to APPRISE Incorporated and its partners (the Energy Center of Wisconsin, Michael Blasnik and Associates, and Dalhoff Associates LLC). The Scope of Work (SOW) for the evaluation includes the following components.

- Impact Assessment Characterization of the weatherization network and the households that are income-eligible for WAP, measurement and monetization of the energy and nonenergy impacts of the program, and assessment of the factors associated with higher levels of energy savings, cost savings, and cost-effectiveness.
- Process Assessment Direct observation of how the weatherization network delivers services and assessment of how service delivery compares to national standards and documentation of how weatherization staff and clients perceive service delivery.
- Special Technical Studies Examination of the performance of the program with respect to technical issues such as air sealing, duct sealing, furnace efficiency, and refrigerators.
- Synthesis Study Synthesis of the findings from this evaluation into a comprehensive assessment of the success of the program in meeting its goals and identification of key areas for program enhancement.

This field study falls under the Special Technical Studies component of the larger evaluation effort.

1.2 BACKGROUND

When it comes to providing ventilation for buildings, there is a fundamental tension between the desire to save energy and the desire for good indoor air quality. The former desire calls for sealing buildings as tightly as possible and minimizing the exchange of air that must then be conditioned for comfort. The latter seeks to ventilate buildings as much as possible to rid them of indoor pollutants.

In recognition of this tension, in early 2011, DOE issued Weatherization Program Notice 11-6, which provided guidance for program grantees on health and safety issues related to the program. Among other things, WPN 11-6 directed grantees to meet guidelines set forth in the American Society of Heating, Refrigerating and Air Conditioning Engineer's (ASHRAE) Standard 62.2, "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings," (ASHRAE 2010, 2013) which spells out requirements for local intermittent and continuous background mechanical ventilation in homes. Grantees were given until 2012 to begin implementing the standard in the program.

Nearly concurrently with WPN 11-6, the National WAP Evaluation effort undertook a large randomized control trial of the impact of the program on selected indoor air quality (IAQ) parameters in single-family homes (Pigg et al., forthcoming). That study found that small—but statistically significant—increases in indoor radon and humidity levels were associated with weatherization.

However, the timing of the IAQ study was such that it preceded widespread implementation of the ASHRAE 62.2 in the program. This left open the question of how these parameters are affected in program homes that receive mechanical ventilation under the 62.2 standard. The study described here sought to shed light on this question by retroactively installing 62.2-compliant ventilation in a sample of weatherized homes that were included in original IAQ field study, and observing the impact on these parameters.

It should be noted that a new (2013) version of the ASHRAE 62.2 standard was released partway through implementation of the study described here, which used the prior version of the standard (2010) as the basis for the mechanical ventilation installed in the study. The new version eliminates a default infiltration credit that existed in prior versions, but allows for full credit for natural infiltration estimated based on a blower door test, which most WAP homes receive. The impact of the new version on the incidence and required flow rates for 62.2-compliant ventilation under the program is unknown, but is thought to be minor (Francisco, 2013).

Due to budget and time constraints, the study described here was limited to the installation of exhaustonly ventilation in heating-dominated climates. The ASHRAE 62.2 standard is agnostic as to the manner in which continuous mechanical ventilation is provided (exhaust-only, supply-only and balanced are the three options), but it is thought that the majority of ventilation systems installed by the program in heating climates are of the exhaust-only type, primarily due to cost. Note however, that this type of ventilation is generally considered to be inappropriate in hot-humid climates, where the potential for mold growth from pulling moist air through building cavities is high, and balanced or supply-only ventilation is the preferred approach.

1.3 RADON AND EXHAUST-ONLY VENTILATION

Radon in homes has been extensively studied since the early 1980s. A full treatment of this topic is beyond the scope of this report, but a brief overview may be helpful for setting the stage for the results that follow.

Radon (Element 86, Rn) is the heaviest known substance that remains a gas under normal conditions. It is also radioactive, and this it is this aspect that drives concern about radon in homes.

In most cases, indoor radon originates in soil gas that infiltrates through foundation cracks or dirt floors in crawlspaces or basements. The concentration of radon in soil gas varies considerably over even short distances and can vary over time.

Soil gas enters a home through foundation cracks and other openings whenever the air pressure on the inside of the foundation is less than the pressure on the outside. Such depressurization can arise from several mechanisms:

- 1. stack effect that occurs whenever the outdoor temperature is less than the indoor temperature;
- 2. wind effects;
- 3. mechanical depressurization from exhaust fans or appliances like clothes dryers in the home; and,

4. changes in barometric pressure, which can take longer to manifest below ground.

Radon is removed from homes through natural or mechanical ventilation.¹ Somewhat paradoxically, most the same forces that drive radon *entry* into homes (specifically, the first three of the four above) also drive ventilation and its *removal* from homes. The net effect of these forces on radon concentration depends on home-specific factors, such as the location of above- and below-grade air leakage pathways, as well as characteristics of the driving forces at any point in time. Needless to say, the combination of changes in source strength and the interplay of the forces that drive radon entry and removal make radon concentration in homes highly idiosyncratic from home to home and dynamic over time. Nonetheless, efforts have been made to model these forces (e.g., Sherman, 1992).

Specifically with regard to exhaust-only ventilation, the addition of such ventilation simultaneously increases the ventilation rate of the home (which acts to reduce radon levels) and further depressurizes foundation spaces where radon typically enters the home (which acts to increase radon levels). The net impact on indoor radon concentration from installing this type of ventilation is thus not clear. The primary goal of the study described here was to gather empirical data to address this question.

¹ Technically speaking, radon, which has a half-life of 3.8 days, is also eliminated from homes by natural decay into its daughter products. But since it is the radiation effects of the longer-lived daughter products that create the concern about radon in the home, it is the removal of radon prior to its decay that is of interest here.

2. METHODOLOGY

2.1 RECRUITMENT AND CHARACTERISTICS OF STUDY HOMES

Homes for the current study were selected from among households in heating-dominated climates that had participated in the earlier WAP Evaluation IAQ study. Specifically, the current study targeted homes with a seven-day, closed home radon test results from the prior study at or above 4 pCi/L. Because homes from the prior study with measured radon above 8 pCi/L had already received radon remediation under a separate effort, this restricted the current study to homes with moderately elevated radon test results in the range of 4 to 8 pCi/L.

The current study was also restricted to homes for which ASHRAE Standard 62.2-2010 called for the addition of mechanical ventilation after taking the infiltration credit based on the measured post-weatherization air leakage for the home and accounting for the presence or absence of local exhaust ventilation in kitchens and bathrooms.

A total of 18 households were recruited for the study in four states: Minnesota, Iowa, Colorado and Ohio (Fig. 2.1). The sample comprises a variety of site-built home types (Fig. 2.2), with a mix of crawlspace and basement foundations, along with one home of slab-on-grade construction (Table 2.1). All of the crawlspaces were either exposed dirt or dirt with an unsealed ground covering. None of the basements in the study sample had dirt floors.

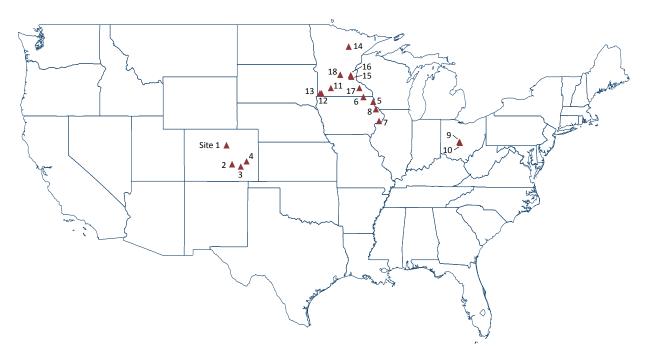


Fig. 2.1. Locations of study sites

Site 1

Site 7

Site 10

Site 13

Site 2

Site 11

Site 14

Site 17

Site 3

Site 6

Site 9

Site 12

Site 15

Site 18

Fig. 2.2. Study sites.

Site	Foundation type	Lowest occupied level	Stories	Above- grade square footage (ft ²)	Above- grade volume (ft ³)	Air leakage (cfm50)
1	crawlspace	first floor	1	830	6,600	1,185
2	crawlspace/basement	first floor	2	2,570	22,130	3,599
3	crawlspace	first floor	1	1,380	11,040	1,397
4	basement	basement	1	1,070	8,580	1,927
5	crawlspace/basement	first floor	1.5	1,140	10,300	1,515
6	basement	basement	1	800	7,200	1,529
7	crawlspace/basement	basement	1	630	4,380	2,519
8	basement	first floor	1.5	1,560	12,480	1,364
9	crawlspace	first floor	1	1,150	9,450	1,495
10	basement	basement	split-level	940	7,490	1,448
11	crawlspace/basement	first floor	1.5	980	6,830	968
12	basement	first floor	1.5	1,410	11,130	1,491
13	crawlspace/basement	basement	1	1,360	10,880	2,475
14	basement	basement	1	1,000	8,000	1,710
15	crawlspace/basement	basement	1.5	2,480	16,120	2,015
16	basement	basement	1	880	7,000	1,415
17	basement	basement	1	1,340	10,750	1,516
18	slab on grade	first floor	1	960	7,460	1,540

Table 2.1. Selected characteristics of study sites.

2.2 INSTALLED VENTILATION EQUIPMENT

While several homes in the study had received bath fans and other ventilation work, none had received continuous mechanical ventilation as part of their weatherization work (which took place in early 2011 before DOE's requirement that the WAP program adhere to ASHRAE 62.2 had been fully implemented). The project team therefore arranged for installation of exhaust fans and fan controls in the homes to meet the ASHRAE 62.2-2010 specifications. The team generally sought to locate the fans in the lowest bathroom in the home, but the presence of existing exhaust fans and the desires of the homeowner regarding location of the new fan also played a role. Only one site received a fan that was not located in a bathroom: the exhaust fan for this site (Site 14) was located between floor joists in the basement.

All but two of the sites received either an 80-cfm or 110-cfm Panasonic Whisper Ceiling fan (Models FV-08VQ5 and FV-11VQ5) with an Airetrak Advantage (Model TTi-ATRAKAV) fan controller. The Airetrak fan controller can be adjusted for both fan speed and duty cycle to achieve a target continuous ventilation rate. The speed adjustment alone was generally sufficient to achieve the target ASHRAE 62.2 continuous ventilation rate, and the controller was set to operate the fan continuously for these sites. One site (Site 3) was set to operate the fan for 55 minutes out of each hour.

In addition to the continuous background ventilation setting, the Airetrak controllers—which are mounted in the same place that a traditional fan on/off switch would be located—have an override button that can be pressed to boost the fan speed to its highest possible setting for a specified period of time. The controllers for the study were set for a 20-minute boost period, after which the fan returned to its background-ventilation level. Note that while the overall on/off status of the fan was tracked for the study, the operating mode was not.

Two sites had a slightly different ventilation package. One (Site 1) received a Panasonic Whisper Green fan that was incompatible with the Airetrak controller. The background ventilation flow for this model of fan is set by adjusting a flow setting on the fan itself. The fan model that was installed also had built-in motion-sensor control for boost mode, rather than the timed manual boost capability at the other sites. The motion sensor proved to be somewhat over sensitive at this site, in that it was reported by the occupant to be frequently triggered by household dogs walking by the bathroom where the fan was located. Late in the monitoring period, tape was used to partially shield the motion sensor to reduce this effect. The other site that received a non-standard ventilation package (Site 4) had an existing Fantech inline bath fan: this was paired with a new Airetrak controller, and configured for continuous ventilation.

Fan flow for each site was measured (with an Energy Conservatory exhaust-fan flow meter and calibrated DG-700 digital manometer), and then adjusted to conform with ASHRAE 62.2 requirements for ventilation, which are partly based on occupancy and partly on square footage. The calculated continuous flow included any applicable infiltration credit based on prior post-weatherization blower door test results, and accounted for local exhaust deficits from lack of verified local exhaust flow in kitchens and other bathrooms. The former can reduce (or even eliminate) the required continuous flow, depending on the measured air leakage of the home. The latter adjusts the continuous flow upwards by a prescribed amount to make up for lack of local exhaust.

Table 2.2 provides more information about the installed ventilation and other ventilation devices in the homes, and Fig. 2.3 compares the measured continuous flow for the installed ventilation with the calculated ASHRAE 62.2 requirement. Note that it was not always possible to measure fan flow (especially for kitchen fans) due to an inability to adequately mount the flow meter for an accurate measurement. Also, pre- and post-study measurements of continuous fan flow did not always agree. In most cases, the two were within 20 percent, but for five sites (Sites 7, 13, 14, 17 and 18) the two measurements differed by 30 to 60 percent. The site with largest discrepancy (Site 14) was deemed to have an error in the post-study measurement. For the remaining sites, the average of the pre- and post-study measurements is reported here.

2.3 EXPERIMENTAL APPROACH AND MONITORING

The experimental approach used for the study was to cycle the installed ventilation for each site on and off on alternate weeks, in order to observe how radon and humidity levels varied with ventilation operation. This was accomplished by installing a programmable timer to interrupt power to the exhaust fan on alternate weeks. Note that the Airetrak fan controller remained powered during fan-off weeks: only power to the fan itself was interrupted for the purposes of the study. However, during the fan-off periods, the fan was completely disabled: it did not operate in either background continuous ventilation or boost mode.

Each home received three visits from a study technician. The first visit involved measuring fan flow and adjusting the fan controller settings to achieve the desired ASHRAE 62.2 mechanical ventilation rate, installing monitoring equipment and enabling the timer used to periodically disable the fan. The second visit occurred midway through the monitoring period; its purpose was to download data from the radon monitor and fan-status logger to ensure proper operation of the radon monitor and operation and tracking of the timer that controlled fan operation. The final visit occurred at the end of the study period, at which time fan flow was re-measured, and all monitoring equipment was removed from the home.

	Installed A	SHRAE 62.2 ventilation			
Site	Location	Boost- mode cfm	Continuous-mode cfm required		Other intermittent ventilation present (cfm, if known)
1	1st floor bathroom	76	measured 35	per 62.2 33	Kitchen
2	1st floor bathroom	61	28	33 31	None
3			-		None
	1st floor bathroom	42	39	44	
4	1st floor bathroom	41	41	49	Kitchen (37)
5	2nd floor bathroom	69	32	31	None
6	1st floor bathroom	38	29	30	None
7	Basement bathroom	24	23	18	Kitchen; 1st floor bath (62); addl 1st floor bath (61)
8	1st floor bathroom	47	49	64	Kitchen; 2nd floor bath (39)
9	1st floor bathroom	79	20	12	Kitchen (145)
10	1st floor bathroom	43	41	56	Basement bath (32)
11	1st floor bathroom	56	27	29	Kitchen
12	1st floor bathroom	62	32	29	Kitchen
13	1st floor bathroom	54	10	8	Kitchen (83)
14	Basement ceiling	81	52	64	Kitchen
15	1st floor bathroom	77	77	84	Kitchen
16	1st floor bathroom	55	21	22	Kitchen(118)
17	Basement bathroom	60	60	61	Kitchen; 1st floor bath (62)
18	1st floor bathroom	56	31	31	Kitchen; 1st floor bath (62)

 Table 2.2. Ventilation characteristics.

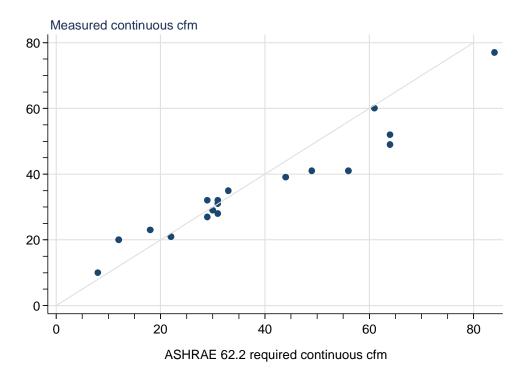


Fig. 2.3. Measured versus ASHRAE-62.2 required continuous flow.

The initial visits occurred between late December 2012 and early March 2013. Final visits occurred in June 2013.

The primary parameters of interest for the study were indoor radon concentration and indoor humidity. Radon was monitored on the lowest occupied level of the home with a continuous radon monitor, configured for 4-hour or 8-hour recording of radon levels (Table 2.3). Humidity and temperature were monitored at the primary thermostat. In addition to these primary parameters, the on/off status of the installed exhaust fan and the furnace air handler were monitored. Data from these data loggers were then merged with local airport weather data for analysis.

Table 2.3.	Monitoring	parameters
------------	------------	------------

Parameter	Data collected	Equipment/Source						
Radon level	Time-stamped integrated average radon concentration at four-hour (3 sites) or eight-hour (15-sites) intervals on lowest occupied level of home.	Sun Nuclear, model 1028 continuous radon monitor						
	Overall average radon level on 1 st floor and in basement or crawlspace over study period	Accustar Alpha Track AT-100 radon test kit						
Indoor temperature and humidity (at main thermostat)	Time-stamped snapshot values at 10-minute (13 sites) or 15-minute (5 sites) intervals	Onset Hobo tempRH logger (Model U10-003)						
Ventilation operation	Timestamp for each on/off state change	Onset Hobo State logger (Model U9- 001) with Veris Hawkeye 300 current switch on power lead to fan						
Furnace/AC air handler operation	Timestamp for each on/off state change	Onset Hobo State logger (Model U9) with Veris Hawkeye 300 current switch on power lead to air handler						
Outdoor conditions								
• Temperature		Nearby National Weather Service						
Humidity	Hourly (or higher time-resolution)	ASOS or AWOS station. [†] (Data						
• Wind speed	values	downloaded from						
Sea-level pressure		wunderground.com)						
Precipitation								
[†] The distance from study sites to their respective weather stations ranged from 2 to 49 miles, with a median of 12 miles.								

3. RESULTS

3.1 RADON IMPACTS

Figure 3.1 provides an overview of the fan operation and radon data for each site. Note that there are gaps in the radon data for Sites 13, 15 and 17: these resulted from loss of power to the radon monitor at the site. Also, Sites 2, 5 and 10 have long periods of fan-on or fan-off operation due to occupant interference with the fan-operation timer. Other fan-operation periods that deviated from the intended seven-day on/off schedule at other sites are the result of brief power outages that reset the timer in the middle of an operating period.

Overall, the sites exhibited a range of radon levels, from less than 0.9 pCi/L (Site 8) to 9.2 pCi/L (Site 13), with most falling in a range of three to seven pCi/L. Radon levels for some sites remained relatively constant throughout the monitoring period (ignoring for the moment any effects due to the mechanical ventilation), but changed significantly for others, sometimes abruptly so (e.g. Site 11). Such changes are not unusual for indoor radon concentration, which is affected by idiosyncratic soil-gas radon concentration, varying natural ventilation rate from wind and stack effect and other weather factors. Regression modeling (described below) was used to help control for some of these factors.

The impact of the installed ventilation on radon at each site is gauged by comparing radon levels with and without the ventilation operating. Results from two approaches are presented here. The first simply compares mean radon levels with and without the ventilation operating. The second uses a more complex regression model to try to better control for variation in weather conditions between the two operating modes. In particular, some sites show a fairly strong relationship between indoor radon level and outdoor temperature (Figure 3.2). Since outdoor temperature was not well-balanced between the fan-on and fan-off periods for some sites, the regression approach helps control for this potentially confounding effect. Appendix A describes the regression model in more detail.

Both analyses attempt to account for the fact that there is a transition period following each change in operating status for the ventilation. For the difference-in-means approach, data were dropped for the first 48 hours following each change in fan operating status.² The regression analysis uses all data, but includes terms to capture transition effects over the first two days following changes in fan operating status.

² Analysis using longer and shorter screens suggest that the results are not highly sensitive to screens between one and four days, and two days represents a reasonable compromise between the competing desires to eliminate transition effects but also maximize the amount of data used in the analysis.

Daily radon level (pCi/L)

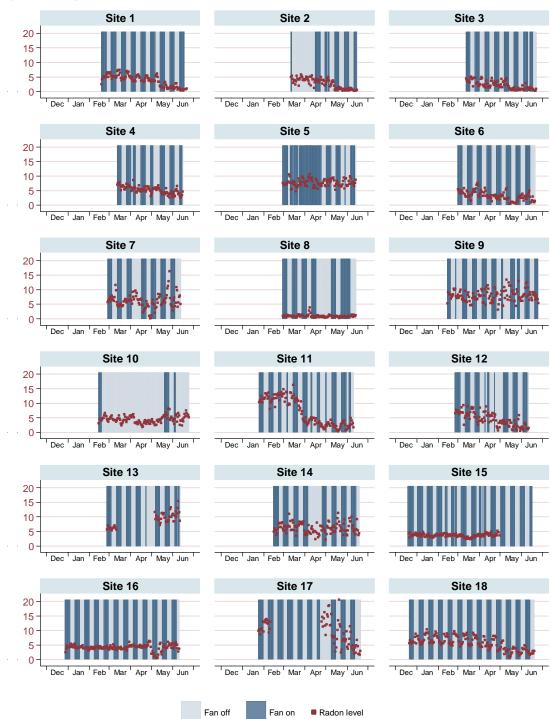
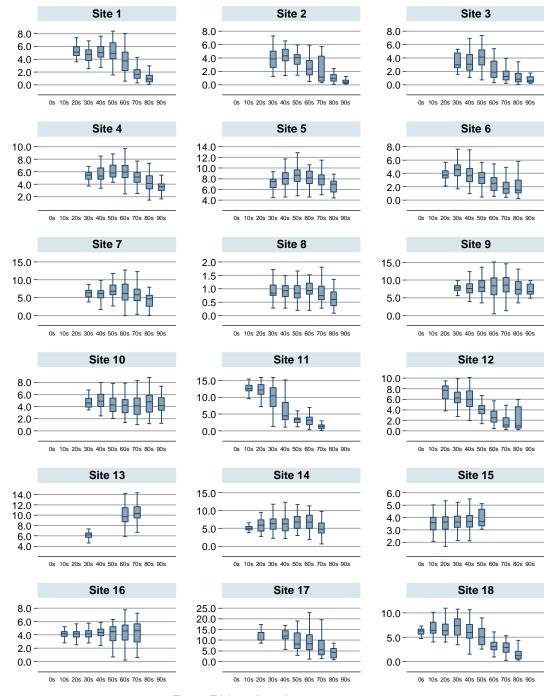



Fig. 3.1 Overview of ventilation fan operation and measured radon level by site.

For 10F bins of outdoor temperature

Box plot key: Box shows the interquartile range (25th to 75 percentile), with horizontal line at the median Whiskers show range of values within 1.5 IQRs of the upper and lower quartile. Outliers beyond the whiskers are not shown. Note: box plot not shown for cases with fewer than 15 observations.

Fig. 3.2 Radon level by bins of outdoor temperature.

Table 3.1 summarizes the results of both analyses, and Figure 3.3 graphically depicts the estimated relative impact of ventilation operation on radon levels by site. Results for Site 10 are omitted due to insufficient fan-on data.

Although the regression confidence intervals allow for a wide range of outcomes for individual sites, the pattern of point estimates across sites suggests that the ventilation generally either reduces indoor radon levels or has little or no effect. It is noteworthy that no sites show any marked increase in radon associated with operation of the ventilation.

The six sites on the left side of Figure 3.3 are notable in having a decrease in radon concentration of 15 percent or more, and for showing a regular pattern in which radon levels decline during periods of fan operation and increase during subsequent fan-off periods. This pattern is exemplified in Figure 3.4 by the time-series plot for Site 18 (similar plots for all sites can be found in Appendix B). This regular pattern strongly suggests that operation of the ventilation is indeed the causative factor behind reduced indoor radon concentrations at these sites.

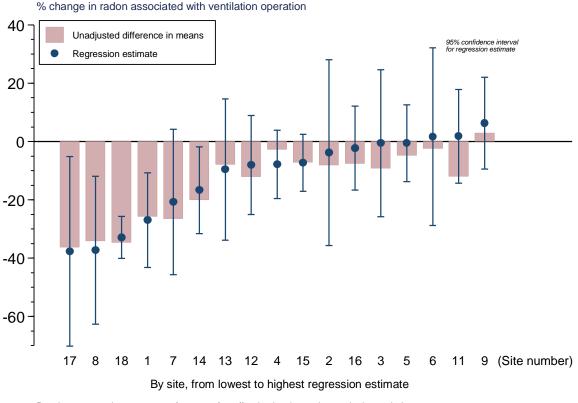

	Mean radon level*			Ventilation effect on radon				
	Days of data*		(pCi/L)		pCi/L		%**	
Site	fan off	fan on	fan off	fan on	difference in means	regression estimate	difference in means	regression estimate
1	34	36	4.42	3.29	-1.14	-1.19	-26%	-27%
2	23	18	2.63	2.42	-0.21	-0.10	-8%	-4%
3	25	29	2.27	2.06	-0.21	-0.01	-9%	-1%
4	24	25	5.31	5.17	-0.15	-0.42	-3%	-8%
5	16	16	7.82	7.45	-0.37	-0.04	-5%	-1%
6	32	32	3.16	3.08	-0.08	+0.05	-2%	+2%
7	32	28	7.16	5.27	-1.89	-1.49	-26%	-21%
8	29	31	1.18	0.78	-0.40	-0.44	-34%	-37%
9	32	31	7.64	7.86	+0.22	+0.48	+3%	+6%
10	20	8	4.22	***	***	***	***	***
11	39	29	7.64	6.72	-0.92	+0.14	-12%	+2%
12	28	28	4.62	4.06	-0.56	-0.37	-12%	-8%
13	12	12	9.14	8.42	-0.73	-0.87	-8%	-10%
14	34	36	6.53	5.22	-1.31	-1.09	-20%	-17%
15	33	31	3.73	3.46	-0.26	-0.27	-7%	-7%
16	45	48	4.28	3.96	-0.32	-0.10	-8%	-2%
17	28	16	10.93	6.97	-3.96	-4.12	-36%	-38%
18	51	51	6.79	4.44	-2.35	-2.23	-35%	-33%
mean	30	28	5.60	4.74	-0.86	-0.71	-15%	-12%
median	31	29	5.31	4.44	-0.40	-0.37	-9%	-8%

Table 3.1 Radon level with and without ventilation system operation.

*Omits the first 48 hours following each change in fan operation status. Also omits data prior to April 9 for Site 2 and prior to April 17 for Site 5.

**Percent of mean fan-off radon level in Column 4.

***insufficient data.

Results expressed as a percent of average fan-off radon level over the monitoring period.

Fig. 3.3 Relative change in radon level associated with fan operation.

The impact of ventilation on radon levels is less straightforward for the other eleven sites. Fig. 3.55 shows an example of one such site (Site 16). The site exhibits several fan-off periods where the average radon level is higher than the adjacent fan-on periods—but also a number of periods where the two are nearly the same. Moreover, highly variable radon levels in May and June also muddy the picture. Though the statistics for the site indicate slightly lower radon levels during fan operation for this site, the extent to which this is due to the fan operation versus an artifact of natural variation is unclear. Other sites in this category are similarly ambiguous as to the degree to which the ventilation affects radon concentration in the home. Nonetheless, even among these low-impact sites, all of the point estimates lie either below or close to zero, suggesting that exhaust-only ventilation is unlikely to increase indoor radon levels by any significant degree.

Taken together, the regression-based results for the six high-impact and 11 low-impact sites yield a statistically-significant mean reduction of 12 percent in relative radon concentration associated with operation of the ventilation. The 95 percent confidence interval associated with this point estimate is ± 7 percentage points, suggesting that widespread application of exhaust ventilation in similar homes will reduce indoor radon by roughly between 5 to 20 percent on average.

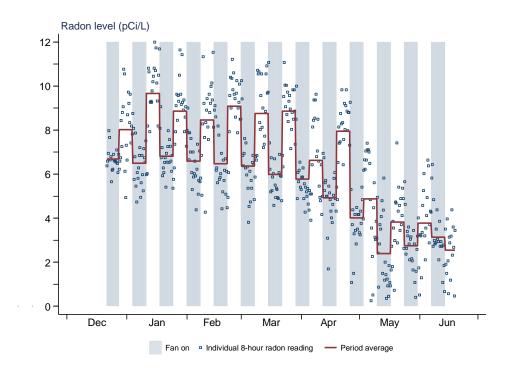


Fig. 3.4. Radon and fan-operation time series for Site 18 (high impact).

Fig. 3.5. Fan operation and radon time series for Site 16 (low impact).

Several possible explanations were explored for why some sites showed a significant regular reduction in radon with fan operation while others did not. These included:

- foundation type
- location of the installed exhaust fan and radon monitor;
- relative contribution of the installed ventilation to overall home ventilation; and,
- outdoor temperature range over which monitoring occurred.

Foundation type

Four types of foundations are represented in the study sample: basements, crawlspaces and slab-ongrade. Some sites had mixed foundations that included both crawlspace and basement spaces. The highimpact sites were somewhat more likely to be basement homes, and somewhat less likely to be mixed basement/crawlspace homes (Table 3.2), but the differences are not statistically significant, given the small number of homes represented. The role of foundation type in the magnitude of the fan impact on radon is therefore inconclusive.

Foundation type	Low-	impact	High	-impact
	n	%	n	%
Basement	4	36%	3	50%
Crawlspace	2	18%	1	17%
Mixed basement/crawlspace	5	44%	1	17%
Slab on grade	0	0%	1	17%
Total sites	11	100%	6	100%

Table 3.2. Foundation type for low- and high-impact sites.

Location of fan and radon monitor

Interestingly, the six high-impact sites included all three cases where the exhaust fan was installed in a basement (Sites 7, 14 and 17). The single site in the study with a slab-on-grade foundation (Site 18) is also among the high-impact sites. This suggests that putting the fan close to radon entry points may result in a larger impact than when the fan is located, say, on a first floor bathroom above a basement.

This assessment is somewhat complicated by the location of the radon monitor itself, however. The monitors were placed on the lowest occupied level of the home, which was a basement for about half of the sites, including all three of the sites where the fan was installed in a basement. It is conceivable that a radon monitor in a basement might record a stronger response than one on a first floor, because it is closer to the typical radon point of entry. However, none of the high-impact sites included homes with a fan on a first floor and a radon monitor in the basement, and five of the low-impact sites had radon monitors in the basement. This suggests that for the sites with basement fans, it is the location of the fan and not the radon monitor that is important.

Mechanical ventilation contribution to overall ventilation

Another possible discriminant for high versus low impact on radon is the extent to which the installed mechanical ventilation affects the overall ventilation rate of the homes in the study. The sites varied their post-weatherization air leakage rates, and the ASHRAE 62.2 calculation procedure produces different values for the amount of mechanical ventilation to install depending on the size of the home, number of bedrooms, air leakage and presence or absence of local exhaust in bathrooms and kitchens. Although the

62.2 procedure takes air leakage into account, variation in the other factors means that the installed mechanical ventilation can be expected to have a relatively larger impact on overall ventilation rates for some homes compared to others.

Actual overall ventilation rates (which vary significantly with outdoor temperature and wind) were not measured for the homes in the study. However, air leakage measurements and other information about the homes allow for estimation of the seasonal average natural ventilation rate for each site.³ These estimates can then be compared against the continuous flow provided by the mechanical ventilation to roughly gauge the relative increase in ventilation from the ventilation.

Figure 3.6 plots the regression-estimated relative impact of the mechanical ventilation on radon against the estimated relative increase in overall ventilation from it.⁴

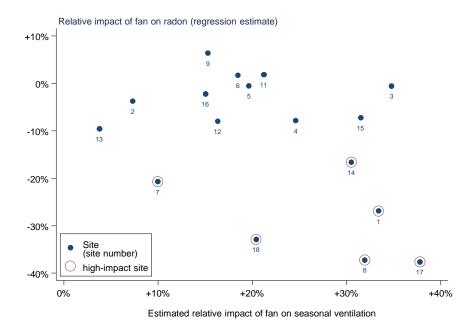
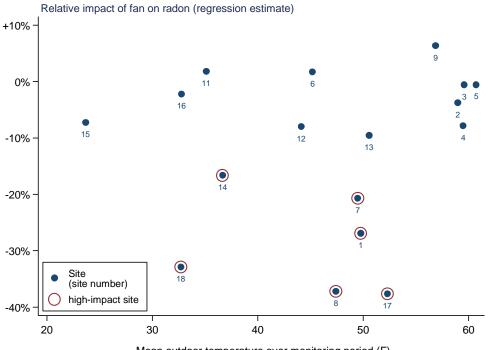


Fig. 3.6. Relative impact on radon versus estimated relative fan contribution to overall ventilation.

³ Estimates used here are based on the enhanced model of natural ventilation in the ASHRAE Handbook of Fundamentals


⁽ASHRAE 2009), and were implemented by Paul Francisco of the University of Illinois. ⁴ The latter estimates assume that on a seasonal basis only half of the measured fan flow is incremental to natural ventilation. See Palmiter and Bond (1991).

Overall, there is a statistically significant relationship between the two values in the expected direction, and the high-impact sites tend to be clustered toward the high end of estimated impact of the fan on overall ventilation rate. However, two high-impact sites (Sites 7 and 18) are on the moderate to low end of the range of estimated fan impact on overall ventilation, and at two low-impact sites (Sites 3 and 15) have high estimated fan impacts on the seasonal ventilation rate. Given that actual ventilation rates can vary considerably from estimates based on air leakage tests, results such as these would perhaps not be unexpected.

Outdoor temperature during monitoring

Temperature-induced stack effect is the dominant driving force behind natural ventilation in homes in heating climates, and this effect varies strongly with outdoor temperature: ventilation is high in cold weather when the indoor-outdoor temperature difference is highest and low when the temperature difference is small. For a ventilation system with fixed flow, this means that the relative contribution of the mechanical ventilation to overall ventilation should be small in cold weather and large in warmer weather.

Because the study sites were geographically dispersed and the monitoring periods varied, it is possible that high-impact sites are concentrated among homes that were monitored under warmer conditions. Figure 3.7 does not support this hypothesis, however: high- and low-impact sites were both monitored across a range of average outdoor temperatures, and no overall relationship between radon impact and temperature is apparent.

Mean outdoor temperature over monitoring period (F)

Fig. 3.7. Relative impact of fan on radon versus outdoor temperature.

3.2 HUMIDITY

Indoor temperature and humidity were measured at the primary thermostat for each site. The analysis here looks at the impact of fan operation on indoor humidity under space-heating conditions, and examines both *absolute* humidity (the weight of water in a given weight of dry air) and *relative* humidity (the amount of moisture relative to the maximum that can be held in air at a given temperature)

Indoor absolute humidity is strongly affected by outdoor absolute humidity (owing to ventilation), and outdoor absolute humidity is closely related to outdoor temperature (because cold air can hold less moisture than warm air). Because of these relationships, results presented here are based on regressing daily indoor absolute humidity against outdoor absolute humidity for days with and without fan operation, and then normalizing these results to typical outdoor humidity at a 32F outdoor temperature. These results are then translated into relative humidity terms using the average indoor temperature for each site (also normalized to 32F outdoor temperature).

As with radon, transition effects are a concern. Because the time required for humidity effects to be felt may be longer than those for radon, the first three days following each fan-operation status change were omitted from the analysis. In addition, Site 10 was dropped due to insufficient fan-on data, and Site 13 was dropped due to data quality issues with the humidity data.

Results of the analysis are summarized in Table 3.3 and Figure 3.8. On average, fan operation reduced normalized indoor relative humidity by a statistically significant 1.7 ± 1.2 percentage points, with a range of point estimates from about -7 percentage points to +3 percentage points, with most sites showing a nominal (if not statistically significant) reduction in humidity associated with fan operation. One site showed a nominal increase in relative humidity of about 3 percentage points; this site is notable both in having the lowest average fan-off relative humidity in the sample, and for having the weakest observed relationship between indoor and outdoor humidity.

Note that there is no particular relationship between the fan's impact on indoor humidity and the general humidity level in the home. Fan operation at the site with the highest relative humidity had no discernible impact, and the largest humidity impact (Site 1) was seen at a site with moderate existing humidity levels.

The 1.7 \pm 1.2 percent decrease in relative humidity associated with the ventilation is about the same as the average increase in humidity associated with weatherization observed in the earlier IAQ study (1.1 \pm 0.6%).

The results here are generally consistent with an earlier study that employed a similar methodology for 32 Wisconsin homes (Pigg et al., 2011). Operation of ASHRAE 62.2-2007 compliant exhaust-only ventilation in those homes resulted in a decline in indoor relative humidity of two to three percentage points. It is possible that both studies somewhat under-state the full humidity impact of the mechanical ventilation owing to the fact that the fans were cycled on and off every week to two weeks: this cycling interval would not allow for drying effects at longer time scales to be observed.

	Mean indoor	Absolute humidity (grains/lb)			Relative humidity (%)			
Site	temperature (F)	Fan-off	Fan-on	Difference	Fan-off	Fan-on	Difference	
1	66.3	40.5	32.0	-8.5	34.7	27.5	-7.2	
2	66.0	25.6	28.8	+3.1	22.8	25.6	+2.8	
3	69.0	36.5	32.6	-3.9	29.8	26.7	-3.1	
4	72.0	50.2	47.8	-2.4	36.5	34.7	-1.8	
5	67.8	34.5	31.1	-3.4	33.5	30.3	-3.3	
6	64.7	39.7	38.0	-1.7	41.9	40.0	-1.8	
7	61.3	38.3	38.4	+0.1	46.5	46.6	+0.1	
8	67.3	34.0	33.4	-0.6	33.1	32.5	-0.6	
9	73.0	37.3	33.9	-3.4	30.2	27.5	-2.7	
11	71.3	31.1	31.6	+0.5	26.0	26.4	+0.4	
12	69.0	38.7	35.9	-2.8	34.9	32.4	-2.5	
14	67.8	38.7	38.1	-0.6	36.7	36.2	-0.5	
15	78.1	36.6	34.2	-2.4	24.9	23.3	-1.6	
16	74.7	48.3	42.6	-5.7	36.8	32.5	-4.3	
17	69.5	38.3	36.7	-1.6	34.6	33.2	-1.4	
18	60.9	25.5	25.5	+0.0	31.1	31.1	+0.0	
mean	68.7	37.1	35.0	-2.1	33.4	31.7	-1.7	
median	68.4	37.8	34.1	-2.1	34.1	31.8	-1.7	
All values	All values normalized to 32F outdoor temperature							

Table 3.3. Indoor temperature and humidity (at 32F outdoor temperature).

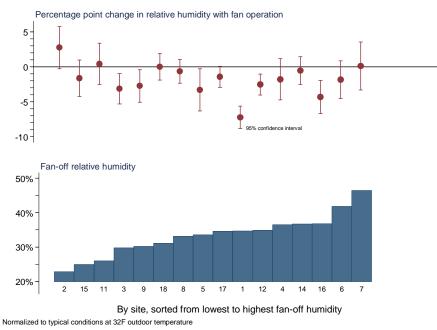


Fig. 3.8. Relative humidity impacts of fan operation.

4. CONCLUSIONS

Radon

Overall, the results of this study suggest that the installation of ASHRAE-62.2 compliant exhaust-only ventilation generally reduces radon levels in single-family, site built homes with moderately elevated radon levels. Although the study sample size is small, and the impact of the ventilation on radon levels in the individual homes in the study is not precisely known, it is striking that none of the sites showed any significant increase in radon associated with operation of the exhaust fans. This suggests that in most cases, the dilution effect of fan-induced ventilation dominates over any depressurization effect that would tend to increase the rate of radon entry into the home.

The study provides some indications regarding why some homes in the study experienced a larger decline in indoor radon with operation of the ventilation than others. Locating the exhaust fan close to the source of radon entry, such as in a basement, makes intuitive sense and appears be a factor, given that all three sites with fans in a basement showed a significant reduction in radon. To the extent that this is true, there are trade-offs to be considered: if only one fan is to be installed in a home, for instance, is it preferable to locate the fan in a little-used basement space for better radon control, or in a high-traffic first-floor bathroom for humidity and odor control?

In a broader sense, the study results suggest that widespread implementation of ASHRAE 62.2 in the weatherization program will help offset the tendency of the program to increase radon levels as revealed in the prior IAQ study. However, the extent to which this offsetting occurs in an aggregate sense depends on the proportion and characteristics of homes that receive 62.2-compliant ventilation, and the degree to which program-installed ventilation acts similarly to that of the homes in the study. If locating the fan in the basement, for example, is an important factor, and fewer homes in the program could be less than observed here.

On the other hand, because it depressurizes foundation spaces, exhaust-only ventilation is arguably least beneficial mechanical ventilation strategy from a radon-control perspective: to the extent that the program installs supply-only or balanced ventilation in homes, the aggregate impact of ASHRAE 62.2 ventilation on radon could be larger than this study would otherwise suggest.

Indoor radon—and the impact of mechanical ventilation on radon—Is a complex phenomenon, and scope and monitoring period for this study precluded more detailed investigation in a larger sample of homes. Additional field research would shed more light on how mechanical ventilation affects indoor radon, and how such ventilation can be optimized to reduce indoor radon levels.

Humidity

Operating the exhaust-only mechanical ventilation decreased heating-season indoor humidity levels for most homes in the sample, but only by a small amount for the most part. Moreover, the magnitude of the effect was not well correlated with indoor humidity levels. This suggests both that exhaust ventilation at ASHRAE 62.2 levels should not be counted on to solve issues with high indoor humidity and that the addition of ventilation may tend to exacerbate humidity issues in homes that are overly dry to begin with. Nonetheless, the results suggest that ASHRAE 62.2 ventilation has the potential to offset a tendency for weatherization to slightly increase average indoor humidity levels, as was found in the prior IAQ study.

5. **REFERENCES**

American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) 2009. 2009 ASHRAE Handbook - Fundamentals (I-P Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010, "Ventilation, and Acceptable Indoor Air Quality in Low-Rise Residential Buildings."

American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2013, "Ventilation, and Acceptable Indoor Air Quality in Low-Rise Residential Buildings."

Francisco, Paul. 2013. Personal communication, July 20, 2013.

Palmiter, L., and T. Bond. 1991. "Interaction of Mechanical Systems and Natural Infiltration." Proceedings of the AIVC 1991 Conference on Air Movement and Ventilation Control Within Buildings, 1:285-295. Coventy, Great Britain: The Air Infiltration and Ventilation Centre.

Pigg, Scott, Andy Mendyk, Robert Parkhurst, Adrian Scott, Patrick Larkin and Bob Pfeiffer. 2011. "Impacts of Mechanical Ventilation in Wisconsin Weatherization Homes—Final Report." Prepared for Wisconsin Division of Administration, Division of Energy Services, Madison, Wisconsin. Available at: http://homeenergyplus.wi.gov/docview.asp?docid=22505&locid=25

Pigg, S., Cautley, D., Francisco, P. with Hawkins, B., and Brennan, T. 2014a. Weatherization and Indoor Environment Quality: Measured Impacts in Single-Family Homes Under the Weatherization Assistance Program. ORNL/TM-2014/170, Oak Ridge National Laboratory, Oak Ridge, Tennessee, September.

Sherman, Max. 1992. "Simplified Modeling for Infiltration and Radon Entry," In: Proceedings, Thermal Performance of the Exterior Envelopes of Buildings Conference V, Atlanta, GA: ASHRAE, LBL-31305.

APPENDIX A. REGRESSION MODELS

APPENDIX A. REGRESSION MODELS

This appendix describes the regression model used to adjust observed differences in radon levels with and without ventilation system operation for weather factors. The model specification is:

$$Rdn_{t} = \beta_{0} + \beta_{1}ventstatus_{t} + \beta_{2}x_{10t} + \beta_{3}x_{11t} + \beta_{4}x_{12t} + \beta_{5}x_{00t} + \beta_{6}x_{01t} + \beta_{7}x_{02t} + \beta_{8}tcat_{0t} + \beta_{9}tcat_{10t} + \beta_{10}tcat_{20t} + \dots \beta_{16}tcat_{80t} + \beta_{17}dslp_{t} + \beta_{18}wind_{t} + u_{t}$$

where,

 $Rdn_t \equiv$ average radon level (pCi/L) for a site during 24-hour period *t*.

*ventstatus*_t is a binary indicator for whether the ventilation system was operating (1) or not (0) during period t.

 x_{10t} through x_{02t} are binary indicators for transition days. The first subscript denotes a transition from fan-off to fan-on (1) or fan-on to fan-off (0). The second subscript denotes the transition period: 0 is the transition day; 1 is the first full 24-hour period following the transition; and, 2 is the second 24-hour period following the transition.

*tcat*_{0t} through *tcat*_{80t} are binary (0/1) indicators for whether average outdoor temperature at a nearby weather station over 24-hour radon reading period *t* is in the range of \leq 0F (*tcat*₀), 1-10F (*tcat*₁₀), 11-20F (*tcat*₂₀),...80F+ (*tcat*₈₀).

dslpt is the change in sea-level air pressure (in. Hg) from the prior period, t-1.

wind_t is the average wind speed (mph) at a nearby weather station over period t.

 u_t is a first-order auto-correlated error term $\equiv \rho u_{t-1} + \varepsilon_t$

where

 ρ is a fitted auto-correlation parameter

 ε_t is random, uncorrelated error

The iterative Prais-Winsten procedure (as implemented in Stata, Version 12.1) was used to estimate the value of the auto-correlation parameter ρ and fit the model coefficients. The specification above was used after exploring other models that included terms precipitation, operation status of heating and cooling equipment and indoor/outdoor temperature differences as well as alternative specifications for outdoor temperature.

The primary coefficient of interest is β_1 which represents the mean change in radon level associated with operation of the ventilation system for Day 3 and beyond following a fanoperation status change, and controlling for the other factors in the model.

Model fits by site are shown on the following pages.

*** Site 1 ***

Source	SS	df	MS		Number of obs	= 122
+-					F(15, 106)	= 3.03
Model	23.925429	15 1.	5950286		Prob > F	= 0.0005
Residual	55.8842109	106 .52	7209537		R-squared	= 0.2998
+-					Adj R-squared	= 0.2007
Total	79.8096399	121 .65	9583801		Root MSE	= .72609
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	-1.190833	.3620648	-3.29	0.001	-1.908662	4730045
x10	.4405756	.3562626	1.24	0.219	2657496	1.146901
x11	1226306	.3185999	-0.38	0.701	7542859	.5090248
x12	.0815895	.2415497	0.34	0.736	3973062	.5604852
x00	-1.190387	.3549537	-3.35	0.001	-1.894118	4866572
x01	2128838	.3227473	-0.66	0.511	8527617	.4269941
x02	.1037683	.2426593	0.43	0.670	3773273	.5848639
tcat						
30	2899861	.2965612	-0.98	0.330	8779476	.2979753
40	.2773621	.3772204	0.74	0.464	470514	1.025238
50	.3342165	.4281876	0.78	0.437	5147072	1.18314
60	.1378483	.4839355	0.28	0.776	8216009	1.097297
70	.1968214	.5579926	0.35	0.725	9094532	1.303096
80	.3152836	.6244607	0.50	0.615	9227704	1.553338
wind	010506	.0190748	-0.55	0.583	0483237	.0273117
dslp	1616719	.3058058	-0.53	0.598	7679615	.4446178
_cons	4.228015	1.138432	3.71	0.000	1.970963	6.485067
rho	.9436862					
Durbin-Watson s	statistic (or	iginal)	1.204165			
Durbin-Watson s	statistic (tr	ansformed)	2.119645			
*** Site 2 ***						
Source	SS	df	MS		Number of obs	= 68
+-					F(15, 52)	= 4.39

Model		24.4310649	15 1.62	873766		Prob > F	= 0.0000
Residual	I	19.2749988	52 .370	673053		R-squared	= 0.5590
	+-					Adj R-squared	= 0.4318
Total		43.7060637	67 .652	329308		Root MSE	= .60883
rdn	I	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+-						
ventstatus	I	0936694	.4139178	-0.23	0.822	9242562	.7369173
x10		5010396	.4113298	-1.22	0.229	-1.326433	.324354
x11	I	.0089555	.3687088	0.02	0.981	730913	.7488239
x12	I	2454257	.3134359	-0.78	0.437	8743808	.3835295
x00	I	9882547	.4368156	-2.26	0.028	-1.864789	11172
x01	I	8488563	.4104569	-2.07	0.044	-1.672498	0252144
x02		2833924	.3256102	-0.87	0.388	936777	.3699922
tcat	I						
30	I	.4157515	.5821808	0.71	0.478	7524797	1.583983
40	I	.1428746	.6052706	0.24	0.814	-1.07169	1.357439
50	I	.0958723	.609092	0.16	0.876	-1.12636	1.318105
60	I	6477131	.6620483	-0.98	0.332	-1.97621	.6807839
70	I	-1.112356	.7263608	-1.53	0.132	-2.569905	.3451938
80	I	-1.646224	.7924493	-2.08	0.043	-3.23639	0560577
wind	I	0435204	.0230792	-1.89	0.065	0898322	.0027913
dslp	I	7544601	.3910062	-1.93	0.059	-1.539072	.0301512
_cons	I	3.75745	.7974511	4.71	0.000	2.157248	5.357653
rho	I	.8322351					
Durbin-Watson	s	tatistic (or	iginal)	1.475720			

Durbin-Watson statistic (transformed) 2.079003

*** Site 3 ***

Source	SS	df	MS		Number of obs	= 99
+					F(15, 83)	= 6.98
Model	46.2935466	15 3.08	8623644		Prob > F	= 0.0000
Residual	36.6770764	83.44	1892487		R-squared	= 0.5580
+					Adj R-squared	= 0.4781
Total	82.9706231	98.84	6639011		Root MSE	= .66475
rdn	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
					5835183	
					6931938	
x11	2471801	.3203453	-0.77	0.443	8843339	.3899738
x12	.0837456	.2611066	0.32	0.749	435585	.6030762
x00	045504	.3354849	-0.14	0.892	7127701	.621762
x01	.0990349	.3196525	0.31	0.757	5367411	.7348108
x02	.2003227	.2719374	0.74	0.463	3405498	.7411953
tcat						
30	.0390522	.7104734	0.05	0.956	-1.374051	1.452155
40	1315423	.7670712	-0.17	0.864	-1.657216	1.394132
50	4922525	.7516658	-0.65	0.514	-1.987286	1.002781
60	-1.15237	.7549354	-1.53	0.131	-2.653906	.3491664
70	-1.910875	.7963993	-2.40	0.019	-3.494881	3268685
80	-2.536063	.8056968	-3.15	0.002	-4.138562	9335645
wind	0957661	.0190777	-5.02	0.000	1337108	0578214
dslp	-1.596381	.3988238	-4.00	0.000	-2.389626	8031366
_cons	4.753148	.7978511	5.96	0.000	3.166255	6.340042
rho	.5090285					
Durbin-Watson	statistic (or	riginal)	1.218383			
Durbin-Watson	statistic (tr	ransformed)	2.018255			

Source	SS	df	MS		Number of obs	= 92
+-					F(15, 76)	= 5.25
Model	57.3856073	15 3.82	570716		Prob > F	= 0.0000
Residual	55.4079663	76.729	052189		R-squared	= 0.5088
+-					Adj R-squared	= 0.4118
Total	112.793574	91 1.23	948982		Root MSE	= .85385
rdn					[95% Conf.	
ventstatus	4177776	.3131968	-1.33	0.186	-1.041563	.2060078
x10	.347338	.4175877	0.83	0.408	4843599	1.179036
x11	.1669286	.4033109	0.41	0.680	6363347	.970192
x12	.7660069	.3622767	2.11	0.038	.0444704	1.487543
x00	1980129	.4248691	-0.47	0.643	-1.044213	.6481873
x01	2076391	.439956	-0.47	0.638	-1.083888	.6686093
x02	2659942	.386365	-0.69	0.493	-1.035507	.5035184
tcat						
30	2615876	.9169765	-0.29	0.776	-2.087905	1.564729
40	-1.313092	.9267874	-1.42	0.161	-3.158949	.5327655
50 I	-1.063845	.9132601	-1.16	0.248	-2.88276	.7550705
60 I	6511982	.9118786	-0.71	0.477	-2.467362	1.164965
70	-1.638828	.9366263	-1.75	0.084	-3.504281	.226625
80	-2.759376	.9360486	-2.95	0.004	-4.623679	895074
wind	0437602	.0254759	-1.72	0.090	0944998	.0069795
dslp	-2.483882	.5115686	-4.86	0.000	-3.502759	-1.465005
_cons	7.352366	.9369721	7.85	0.000	5.486224	9.218508
rho	.2771432					
Durbin-Watson s	statistic (or	iginal)	1.627987			
Durbin-Watson s	tatistic (tr	ansformed)	1.998571			

***	Site	5	***
-----	------	---	-----

Source	SS	df	MS		Number of ob	os = 56
+-					F(13, 42)	= 0.41
Model	7.15261082	13 .550	200832		Prob > F	= 0.9582
Residual	56.468278	42 1.34	448281		R-squared	= 0.1124
+-					Adj R-squared	d = -0.1623
Total	63.6208888	55 1.15	674343		Root MSE	= 1.1595
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	0431305	.5111135	-0.08	0.933	-1.074599	.9883383
x10	.4872923	.7323354	0.67	0.509	9906205	1.965205
x11	.1895646	.751447	0.25	0.802	-1.326917	1.706046
x12	.8417916	.6663088	1.26	0.213	5028739	2.186457
x00	.2772482	.6892334	0.40	0.690	-1.113681	1.668178
x01	0182951	.7380788	-0.02	0.980	-1.507798	1.471208
x02	3394445	.6467318	-0.52	0.602	-1.644602	.9657131
tcat						
50	.631648	.772285	0.82	0.418	9268862	2.190182
60	.5114722	.780851	0.66	0.516	-1.064349	2.087293
70	0235795	.7419793	-0.03	0.975	-1.520954	1.473795
80	.0031242	.9660111	0.00	0.997	-1.946365	1.952614
wind	005975	.0478008	-0.12	0.901	1024408	.0904909
dslp	-1.385472	1.116252	-1.24	0.221	-3.638159	.867216
_cons	7.452184	1.011021	7.37	0.000	5.411861	9.492507
rho	.2020419					

Durbin-Watson statistic (original) 1.708678

Durbin-Watson statistic (transformed) 1.918945

*** Site 6 ***

Source	SS	df	MS		Number of obs	= 110
+-					F(16, 93)	= 4.14
Model	62.9115721	16 3.9	3197326		Prob > F	= 0.0000
Residual	88.2966201	93.94	9426023		R-squared	= 0.4161
+-					Adj R-squared	= 0.3156
Total	151.208192	109 1.3	8723112		Root MSE	= .97438
rdn					[95% Conf.	
ventstatus	.0529707	.4854064	0.11	0.913	9109503	1.016892
x10	.9212593	.5227945	1.76	0.081	1169069	1.959425
x11	.0657763	.4851746	0.14	0.892	8976842	1.029237
x12	2443549	.3825073	-0.64	0.525	-1.003939	.5152289
x00	7724647	.5002436	-1.54	0.126	-1.765849	.2209198
x01	5865028	.4665988	-1.26	0.212	-1.513076	.3400699
x02	4535084	.3622724	-1.25	0.214	-1.17291	.2658929
tcat						
20	1.097161	.8265743	1.33	0.188	5442519	2.738574
30	1.128916	.9035827	1.25	0.215	6654205	2.923252
40	2.144705	.9854743	2.18	0.032	.1877484	4.101662
50	1.580282	1.016593	1.55	0.123	4384693	3.599034
60 I	.2676869	1.042247	0.26	0.798	-1.80201	2.337384
70	5614227	1.051046	-0.53	0.595	-2.648593	1.525747
80	.0450603	1.102749	0.04	0.967	-2.144782	2.234902
wind	0564686	.0244296	-2.31	0.023	1049809	0079563
dslp	8442835	.481462	-1.75	0.083	-1.800372	.1118046
_cons	3.065683	1.064349	2.88	0.005	.9520963	5.17927
rho	.7023169					
Durbin-Watson s	statistic (or	iginal)	0.911449			
Durbin-Watson s	statistic (tr	ansformed)	1.860661			

***	Site	7	***
-----	------	---	-----

Source	SS	df	MS		Number of ob	os = 103
+-					F(15, 87)	= 0.91
Model	56.3140915	15 3.7	5427276		Prob > F	= 0.5529
Residual	357.795153	87 4.1	1258796		R-squared	= 0.1360
+-					Adj R-squared	l = -0.0130
Total	414.109244	102 4.0	5989455		Root MSE	= 2.028
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	-1.485016	.8983291	-1.65	0.102	-3.270543	.30051
x10	.0772333	1.089938	0.07	0.944	-2.089137	2.243604
x11	.2466539	1.024769	0.24	0.810	-1.790185	2.283493
x12	.2613335	.8257862	0.32	0.752	-1.380006	1.902673
x00	5816194	.9500279	-0.61	0.542	-2.469903	1.306664
x01	0722488	.9409131	-0.08	0.939	-1.942415	1.797918
x02	.6442377	.7928224	0.81	0.419	9315827	2.220058
tcat						
30	.5248622	1.292371	0.41	0.686	-2.043864	3.093589
40	.5122314	1.494994	0.34	0.733	-2.459231	3.483693
50	.7652699	1.546164	0.49	0.622	-2.307899	3.838439
60	.5443932	1.604259	0.34	0.735	-2.644246	3.733032
70	375175	1.640545	-0.23	0.820	-3.635935	2.885585
80	4977372	1.734864	-0.29	0.775	-3.945967	2.950492
wind	0507486	.0552689	-0.92	0.361	1606015	.0591043
dslp	7275223	1.164204	-0.62	0.534	-3.041503	1.586458
_cons	7.162923	1.75376	4.08	0.000	3.677136	10.64871
rho	.5869047					
Durbin-Watson s	tatistic (or	iginal)	0.892677			
Durbin-Watson s	tatistic (tr	ansformed)	2.116181			

***	Site	8	***
-----	------	---	-----

Source	SS	df	MS		Number of ob	s = 103
+-					F(15, 87)	= 2.45
Model	4.35895032	15 .29	0596688		Prob > F	= 0.0050
Residual	10.3276805	87 .11	8708971		R-squared	= 0.2968
+-					Adj R-squared	= 0.1756
Total	14.6866308	102 .14	3986576		Root MSE	= .34454
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	438424	.1502133	-2.92	0.004	7369891	1398588
x10	.3054597	.1690093	1.81	0.074	0304645	.6413839
x11	.116787	.1655543	0.71	0.482	21227	.445844
x12	0341278	.138541	-0.25	0.806	309493	.2412375
x00	4328938	.1824013	-2.37	0.020	7954362	0703514
x01	236049	.1717125	-1.37	0.173	5773461	.1052482
x02	0930181	.1430487	-0.65	0.517	3773429	.1913067
tcat						
30	1307229	.1839009	-0.71	0.479	4962458	.2348001
40	0427257	.2124735	-0.20	0.841	4650398	.3795885
50	.0267513	.2246876	0.12	0.906	4198396	.4733422
60	.0379722	.2347491	0.16	0.872	4286171	.5045614
70	1950091	.239678	-0.81	0.418	6713952	.2813769
80	2998822	.2933921	-1.02	0.310	8830309	.2832664
wind	0499359	.0107833	-4.63	0.000	0713689	0285028
dslp	.0846344	.1920649	0.44	0.661	2971155	.4663842
_cons	1.802177	.2772368	6.50	0.000	1.251139	2.353215
rho	.5232526					
Durbin-Watson s	tatistic (or	iginal)	1.099652			
Durbin-Watson s	tatistic (tr	ansformed)	2.009261			

A-11

***	Site	9	***
-----	------	---	-----

Source	SS	df	MS		Number of ob	s = 123
+-					F(14, 108)	= 1.85
Model	107.752453	14 7.	6966038		Prob > F	= 0.0405
Residual	449.869306	108 4.1	6545654		R-squared	= 0.1932
+-					Adj R-squared	= 0.0887
Total	557.621759	122 4.5	7067016		Root MSE	= 2.0409
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	.4835696	.6063086	0.80	0.427	7182393	1.685378
x10	5261888	.7800892	-0.67	0.501	-2.072461	1.020083
x11	.5227321	.8056669	0.65	0.518	-1.074239	2.119704
x12	7479541	.7472572	-1.00	0.319	-2.229147	.7332393
x00	.7772491	.788375	0.99	0.326	7854469	2.339945
x01	.6413462	.786316	0.82	0.417	9172686	2.199961
x02	1.666883	.7820234	2.13	0.035	.1167767	3.216989
tcat						
40	0318267	.9111117	-0.03	0.972	-1.837808	1.774155
50	.2516552	.9475407	0.27	0.791	-1.626535	2.129845
60	.0977703	1.036355	0.09	0.925	-1.956465	2.152006
70	.6579056	.9142214	0.72	0.473	-1.15424	2.470051
80	3539508	.936616	-0.38	0.706	-2.210486	1.502585
wind	2262339	.0696411	-3.25	0.002	3642745	0881932
dslp	-1.21101	1.127805	-1.07	0.285	-3.446516	1.024496
_cons	9.384023	1.113242	8.43	0.000	7.177384	11.59066
rho	.1874386					
Durbin-Watson s	tatistic (or	iginal)	1.638812			

Durbin-Watson statistic (transformed) 1.972057

*** Site	11	***
----------	----	-----

Source	SS	df	MS		Number of ob	os = 133
+-					F(17, 115)	= 3.44
Model	101.787404	17 5.9	8749436		Prob > F	= 0.0000
Residual	199.916128	115 1.73	3840112		R-squared	= 0.3374
+-					Adj R-squared	l = 0.2394
					Root MSE	
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ventstatus	.1370341	.6194554	0.22	0.825	-1.089988	1.364056
x10	.721565	.6019226	1.20	0.233	4707278	1.913858
x11	0793685	.5339301	-0.15	0.882	-1.136981	.9782442
x12	2591398	.4265817	-0.61	0.545	-1.104116	.5858365
x00	29355	.5447702	-0.54	0.591	-1.372635	.7855349
x01	133897	.4793793	-0.28	0.781	-1.083455	.8156612
x02	2573412	.3728278	-0.69	0.491	9958412	.4811589
tcat						
10	.9970493	.7108173	1.40	0.163	4109429	2.405042
20	.8967625	.9086941	0.99	0.326	9031855	2.696711
30	.3474427	.9956599	0.35	0.728	-1.624768	2.319653
40	.2702453	1.035556	0.26	0.795	-1.780992	2.321483
50	0286586	1.170072	-0.02	0.981	-2.346347	2.28903
60	.6185027	1.278839	0.48	0.630	-1.914632	3.151637
70	.449619	1.35639	0.33	0.741	-2.237128	3.136366
80	.5590671	1.544087	0.36	0.718	-2.499472	3.617606
wind	1185512	.0279921	-4.24	0.000	1739982	0631042
dslp	1.188866	.4879954	2.44	0.016	.2222415	2.155491
_cons	6.968142	2.604782	2.68	0.009	1.80857	12.12771
rho	.9637899					
Durbin-Watson s	tatistic (or	iginal)	1.138243			
Durbin-Watson s	tatistic (tr	ansformed)	2.357592			

A-13

***	Site	12	***
-----	------	----	-----

Source	SS	df	MS		Number of ob	os = 105
+-					F(15, 89)	= 14.16
Model	309.598454	15 20	.639897		Prob > F	= 0.0000
Residual	129.727524	89 1.4	5761263		R-squared	= 0.7047
+-					Adj R-squared	l = 0.6549
Total	439.325978	104 4.2	2428825		Root MSE	= 1.2073
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	3700238	.3946104	-0.94	0.351	-1.154106	.4140586
x10	4229919	.5194596	-0.81	0.418	-1.455147	.6091632
x11	0273701	.514024	-0.05	0.958	-1.048725	.9939846
x12	.0313172	.5069113	0.06	0.951	9759048	1.038539
x00	6959352	.5005455	-1.39	0.168	-1.690509	.2986381
x01	.5931803	.5037459	1.18	0.242	407752	1.594113
x02	.8957873	.5071699	1.77	0.081	1119485	1.903523
tcat						
30	4231729	.7094728	-0.60	0.552	-1.83288	.9865345
40	-1.259412	.7288672	-1.73	0.087	-2.707656	.1888316
50	-3.038483	.7989124	-3.80	0.000	-4.625905	-1.451062
60	-4.334887	.7366525	-5.88	0.000	-5.7986	-2.871174
70	-5.609515	.7675125	-7.31	0.000	-7.134546	-4.084485
80	-6.207991	1.099931	-5.64	0.000	-8.393531	-4.022451
wind	1451795	.0363442	-3.99	0.000	2173946	0729643
dslp	-1.220193	.6500353	-1.88	0.064	-2.511799	.0714132
_cons	8.838176	.8034363	11.00	0.000	7.241765	10.43459
rho	.1846946					
Durbin-Watson s	tatistic (or	iginal)	1.658140			
Durbin-Watson s	tatistic (tr	ansformed)	1.990092			

***	Site	13	***
-----	------	----	-----

Source	SS	df	MS		Number of ob	s = 45
+-					F(15, 29)	= 3.11
Model	110.91306	15 7.3	9420397		Prob > F	= 0.0043
Residual	68.9709395	29 2.3	7830826		R-squared	= 0.6166
+-					Adj R-squared	= 0.4183
Total	179.883999	44 4.	0882727		Root MSE	= 1.5422
rdn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
ventstatus	874031	1.082741	-0.81	0.426	-3.088485	1.340423
x10	1.925765	1.090091	1.77	0.088	3037215	4.155252
x11	.9191585	1.078731	0.85	0.401	-1.287094	3.125411
x12	0605064	.9438697	-0.06	0.949	-1.990937	1.869924
x00	.2834381	1.241559	0.23	0.821	-2.255834	2.822711
x01	.7114756	1.322989	0.54	0.595	-1.994341	3.417292
x02	3720996	1.160656	-0.32	0.751	-2.745907	2.001708
tcat						
30	.2406948	1.512067	0.16	0.875	-2.851829	3.333219
40	.0513171	2.255258	0.02	0.982	-4.561203	4.663837
50	2.564335	2.222256	1.15	0.258	-1.980689	7.109359
60	3.954348	1.711261	2.31	0.028	.4544267	7.454269
70	3.428355	1.793364	1.91	0.066	2394863	7.096196
80	3.210023	2.138554	1.50	0.144	-1.163811	7.583857
wind	0401177	.0782429	-0.51	0.612	2001424	.1199071
dslp	-1.09683	1.985612	-0.55	0.585	-5.157862	2.964202
_cons	7.082497	1.999408	3.54	0.001	2.993248	11.17175
rho	.4183387					
Durbin-Watson s	tatistic (or	iginal)	1.007184			
Durbin-Watson s	tatistic (tr	ansformed)	1.537357			

*** Site 14 ***

Source	SS	df	MS		Number of obs	= 122
+-					F(16, 105)	= 6.16
Model	183.891101	16 11.4	1931938		Prob > F	= 0.0000
Residual	195.879391	105 1.86	6551801		R-squared	= 0.4842
+-					Adj R-squared	= 0.4056
Total	379.770491	121 3.1	L385991		Root MSE	= 1.3658
rdn					[95% Conf.	
ventstatus	-1.087856	.4903667	-2.22	0.029	-2.060163	1155496
x10	1.811852	.6139468	2.95	0.004	.5945093	3.029196
x11	.1064261	.6035308	0.18	0.860	-1.090264	1.303116
x12	.4118441	.5096442	0.81	0.421	5986863	1.422374
x00	5376122	.6324634	-0.85	0.397	-1.79167	.7164459
x01	0227415	.5690843	-0.04	0.968	-1.151131	1.105647
x02	.3164849	.5079895	0.62	0.535	6907644	1.323734
tcat						
10	8655533	1.317402	-0.66	0.513	-3.477719	1.746612
20	-1.7635	1.41946	-1.24	0.217	-4.578027	1.051028
30	-1.297869	1.409126	-0.92	0.359	-4.091906	1.496167
40 I	-1.65783	1.447295	-1.15	0.255	-4.527548	1.211889
50	5596797	1.450763	-0.39	0.700	-3.436275	2.316915
60 I	-1.514969	1.435169	-1.06	0.294	-4.360645	1.330707
70	-1.442974	1.482549	-0.97	0.333	-4.382595	1.496647
wind	1340244	.0424994	-3.15	0.002	2182928	049756
dslp	-5.546535	.7174599	-7.73	0.000	-6.969125	-4.123944
_cons	8.986637	1.469546	6.12	0.000	6.072798	11.90048
rho	.3694833					
Durbin-Watson s	statistic (or	iginal)	1.327772			
Durbin-Watson s	statistic (tr	ansformed)	1.989089			

***	Site	15	***
-----	------	----	-----

Source	SS	df	MS		Number of ob	s = 127
+-					F(16, 110)	= 5.21
Model	18.8669966	16 1.17	918729		Prob > F	= 0.0000
Residual	24.8807997	110 .226	189088		R-squared	= 0.4313
+-					Adj R-squared	= 0.3485
					Root MSE	
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ventstatus	2708626	.1839942	-1.47	0.144	6354959	.0937707
x10	.4243495	.1999102	2.12	0.036	.0281744	.8205246
x11	.3756436	.1943563	1.93	0.056	0095249	.7608121
x12	.2048304	.1799457	1.14	0.257	1517798	.5614406
x00	1933349	.1994445	-0.97	0.334	5885872	.2019174
x01	0913094	.1959191	-0.47	0.642	479575	.2969563
x02	094257	.168603	-0.56	0.577	4283886	.2398746
tcat						
10	1132027	.256943	-0.44	0.660	6224035	.395998
20	0432021	.2843118	-0.15	0.880	6066414	.5202373
30	020893	.2902818	-0.07	0.943	5961634	.5543773
40	.0234226	.3017533	0.08	0.938	5745815	.6214268
50	.3431473	.3620205	0.95	0.345	3742922	1.060587
60	.7279952	.5658134	1.29	0.201	3933142	1.849305
70	.6442359	.4764451	1.35	0.179	2999664	1.588438
wind	0124571	.0147154	-0.85	0.399	0416196	.0167054
dslp	7636364	.1850575	-4.13	0.000	-1.130377	3968958
_cons	3.872489	.3363341	11.51	0.000	3.205953	4.539024
rho	.4666521					
Durbin-Watson s	tatistic (or	iginal)	1.201595			
Durbin-Watson s	tatistic (tr	ansformed)	2.265225			

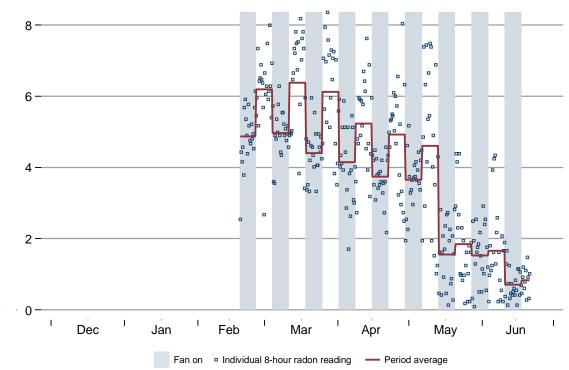
*** Site 16 ***

Source	SS	df	MS		Number of obs	= 163
+-					F(17, 145)	= 2.39
Model	23.464771	17 1.3	8028065		Prob > F	= 0.0027
Residual	83.6271636	145 .57	6739059		R-squared	= 0.2191
+-					Adj R-squared	= 0.1276
Total	107.091935	162 .66	1061325		Root MSE	= .75943
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
					7100889	
x10	.1451858	.3215339	0.45	0.652	490313	.7806847
x11	.3811045	.2987671	1.28	0.204	2093965	.9716055
x12	.0894954	.2361721	0.38	0.705	3772891	.55628
x00	0430921	.3171117	-0.14	0.892	6698505	.5836663
x01	.119373	.2948252	0.40	0.686	4633371	.7020832
x02	.195868	.2345343	0.84	0.405	2676795	.6594156
tcat						
10	3111865	.369688	-0.84	0.401	-1.04186	.4194868
20	3183527	.4268463	-0.75	0.457	-1.161997	.5252918
30	5691188	.4539939	-1.25	0.212	-1.466419	.3281817
40	5453213	.4960828	-1.10	0.273	-1.525809	.4351663
50	6353448	.5420522	-1.17	0.243	-1.706689	.4359994
60 I	5149498	.5704163	-0.90	0.368	-1.642355	.6124549
70	.0535299	.6014965	0.09	0.929	-1.135304	1.242363
80	-1.371792	.8774207	-1.56	0.120	-3.105979	.3623945
wind	0366009	.0199145	-1.84	0.068	0759611	.0027594
dslp	8619273	.2475237	-3.48	0.001	-1.351148	3727066
_cons	4.867488	.5203861	9.35	0.000	3.838966	5.89601
rho	.728393					
Durbin-Watson s	statistic (or	iginal)	0.834511			
Durbin-Watson s	statistic (tr	ansformed)	2.037288			

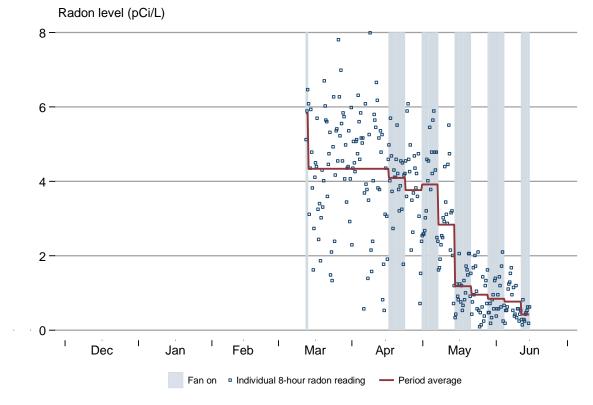
***	Site	17	***
-----	------	----	-----

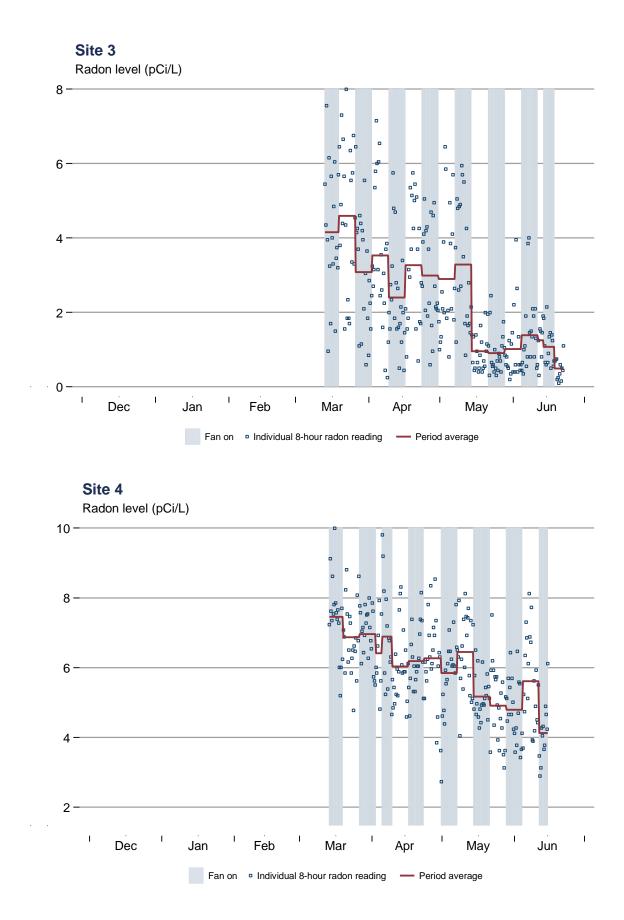
Source	SS	df	MS		Number of ob	os = 71
+-					F(17, 53)	= 2.98
Model	354.101468	17 20.8	3294981		Prob > F	= 0.0012
Residual	371.033516	53 7.00	063237		R-squared	= 0.4883
+-					Adj R-squared	l = 0.3242
					Root MSE	
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ventstatus	-4.115688	1.771817	-2.32	0.024	-7.669504	5618721
x10	3.779619	1.950996	1.94	0.058	1335839	7.692822
x11	.6813519	1.905605	0.36	0.722	-3.140808	4.503512
x12	488019	1.429576	-0.34	0.734	-3.355386	2.379348
x00	-3.578092	1.830559	-1.95	0.056	-7.249729	.093544
x01	7252273	1.752795	-0.41	0.681	-4.240888	2.790434
x02	-1.557876	1.362284	-1.14	0.258	-4.290272	1.17452
tcat						
10	1756462	2.605026	-0.07	0.946	-5.400666	5.049374
20	-2.440253	3.633643	-0.67	0.505	-9.728418	4.847912
30	-2.364531	3.45424	-0.68	0.497	-9.29286	4.563798
40	-3.952279	3.63728	-1.09	0.282	-11.24774	3.34318
50	-2.92966	3.507394	-0.84	0.407	-9.964601	4.105281
60	-4.49327	3.554708	-1.26	0.212	-11.62311	2.636571
70	-5.438244	3.634429	-1.50	0.141	-12.72799	1.851498
80	-6.728075	3.833949	-1.75	0.085	-14.418	.9618536
wind	.0614517	.0971497	0.63	0.530	1334059	.2563093
dslp	-10.21603	2.19834	-4.65	0.000	-14.62534	-5.806717
_cons	14.47422	3.744966	3.86	0.000	6.962767	21.98567
rho	.6909045					
Durbin-Watson s	tatistic (or	iginal)	1.183874			
Durbin-Watson s	tatistic (tr	ansformed)	2.201835			

***	Site	18	***
-----	------	----	-----

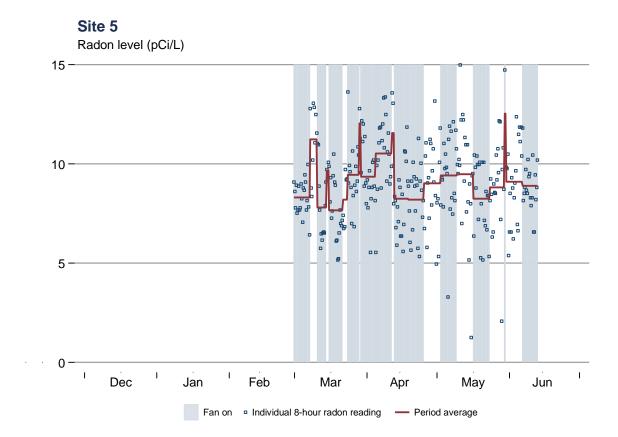

Source	SS	df	MS		Number of ok	os = 179
+-					F(17, 161)	= 24.60
Model	299.528819	17 17.0	5193423		Prob > F	= 0.0000
Residual	115.298086	161 .716	5137183		R-squared	= 0.7221
+-					Adj R-squared	d = 0.6927
					Root MSE	
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
					-2.726472	
x10	1.855643	.3106266	5.97	0.000	1.242215	2.469071
x11	.203703	.3057921	0.67	0.506	4001777	.8075837
x12	.3515174	.2612523	1.35	0.180	1644057	.8674405
x00	-2.485869	.3011279	-8.26	0.000	-3.080539	-1.8912
x01	7608005	.2952108	-2.58	0.011	-1.343785	1778158
x02	1286471	.2650407	-0.49	0.628	6520517	.3947575
tcat						
10	.0825952	.3673263	0.22	0.822	6428038	.8079942
20	243839	.398173	-0.61	0.541	-1.030154	.5424763
30	1420174	.4135021	-0.34	0.732	9586047	.6745698
40	6883413	.4452216	-1.55	0.124	-1.567568	.1908859
50	-1.933531	.4803782	-4.03	0.000	-2.882186	984876
60	-3.184674	.4619553	-6.89	0.000	-4.096947	-2.272401
70	-4.154298	.4656726	-8.92	0.000	-5.073912	-3.234684
80	-5.309863	.6075477	-8.74	0.000	-6.509653	-4.110073
wind	0790026	.0200825	-3.93	0.000	1186617	0393436
dslp	9510474	.3204659	-2.97	0.003	-1.583906	3181888
_cons	8.870934	.4458688	19.90	0.000	7.990429	9.751439
rho	.4238295					
Durbin-Watson s	tatistic (or	iginal)	1.281556			
Durbin-Watson s	tatistic (tr	ansformed)	1.984302			

APPENDIX B. TIME SERIES PLOTS

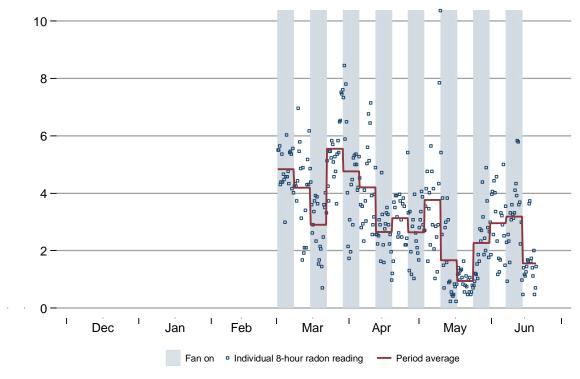

Plots on the following pages show 8-hour radon and fan operation data for each site, along with the average radon level associated with each fan on/off period. Note that no screening for transition periods has been applied to the period averages here. Also note that the plots are individually scaled for radon for each site.


Site 1

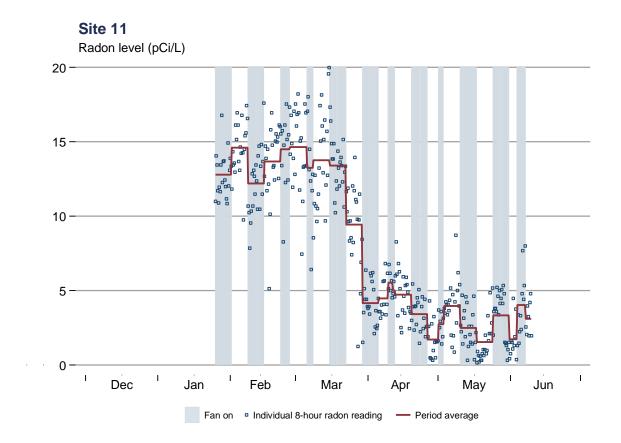
Radon level (pCi/L)



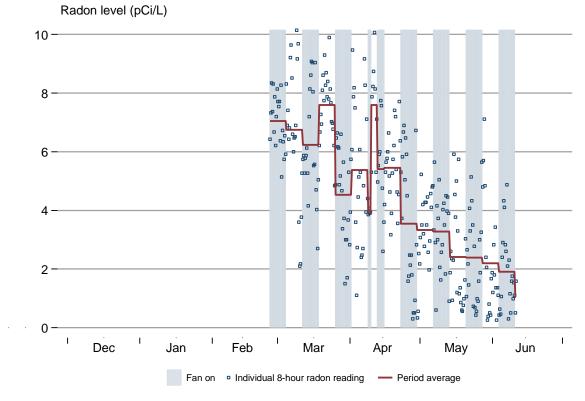
Site 2

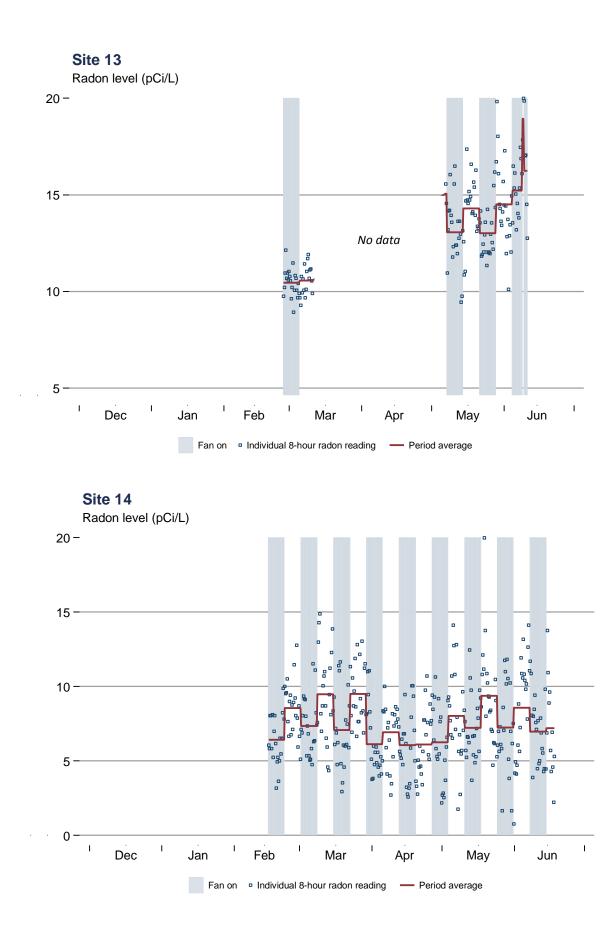


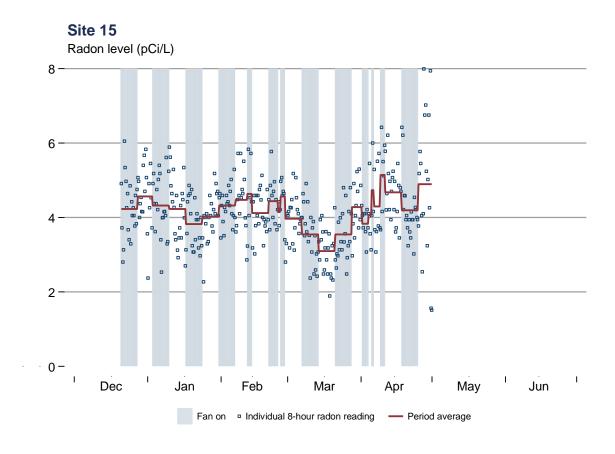
B-4

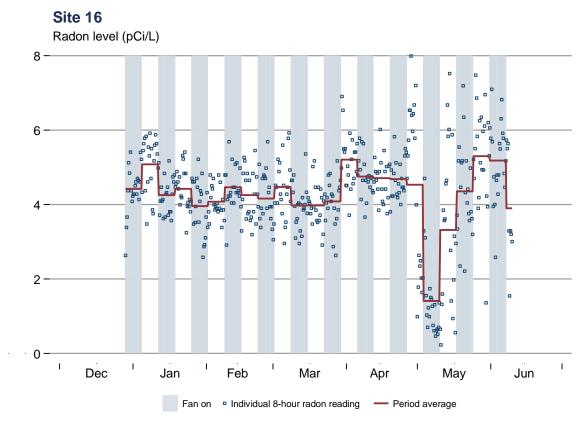


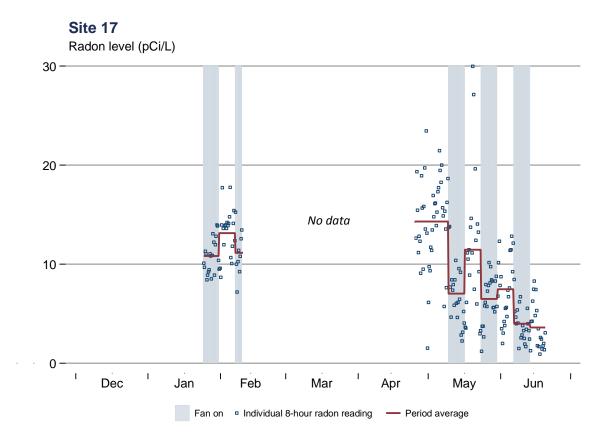
Site 6


Radon level (pCi/L)








Site 12

